Crystal structure analysis reveals a spring-loaded latch as molecular mechanism for GDF-5-type I receptor specificity.
نویسندگان
چکیده
Dysregulation of growth and differentiation factor 5 (GDF-5) signalling, a member of the TGF-beta superfamily, is strongly linked to skeletal malformation. GDF-5-mediated signal transduction involves both BMP type I receptors, BMPR-IA and BMPR-IB. However, mutations in either GDF-5 or BMPR-IB lead to similar phenotypes, indicating that in chondrogenesis GDF-5 signalling seems to be exclusively mediated through BMPR-IB. Here, we present structural insights into the GDF-5:BMPR-IB complex revealing how binding specificity for BMPR-IB is generated on a molecular level. In BMPR-IB, a loop within the ligand-binding epitope functions similar to a latch allowing high-affinity binding of GDF-5. In BMPR-IA, this latch is in a closed conformation leading to steric repulsion. The new structural data now provide also a molecular basis of how phenotypically relevant missense mutations in GDF-5 might impair receptor binding and activation.
منابع مشابه
Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: A DFT study
The N-(2-benzoyl-phenyl) oxalyl derivatives are important models for studying of three-centered intramolecular hydrogen bonding in organic molecules. The quantum theoretical calculations for two crystal structures of N-(2-benzoyl-phenyl) oxalyl (compounds I and II) were performed by Density Functional Theory (B3LYP method and 6-311+G* basis set). From the optimized structures, geometric paramet...
متن کاملComparison of Wild Type and Mutated (mHuIFN-β 27-101) Interferon Binding to the IFNRA Receptor by Molecular Docking
Introduction: Interferon beta is one of the members of type I interferons. Creating R27T and V101F mutations is one of the important researches performed to improve function, decrease immunogenicity, increase expression and increase half-life of interferon beta. In this study, the effects of R27T and V101F mutations on interferon beta binding to interferon receptors were studied by molecular do...
متن کاملComparison of Wild Type and Mutated (mHuIFN-β 27-101) Interferon Binding to the IFNRA Receptor by Molecular Docking
Introduction: Interferon beta is one of the members of type I interferons. Creating R27T and V101F mutations is one of the important researches performed to improve function, decrease immunogenicity, increase expression and increase half-life of interferon beta. In this study, the effects of R27T and V101F mutations on interferon beta binding to interferon receptors were studied by molecular do...
متن کاملAlteration of χ recognition by RecBCD reveals a regulated molecular latch and suggests a channel-bypass mechanism for biological control.
The RecBCD enzyme is a complex heterotrimeric helicase/nuclease that initiates recombination at double-stranded DNA breaks. In Escherichia coli, its activities are regulated by the octameric recombination hotspot, χ (5'-GCTGGTGG), which is read as a single-stranded DNA sequence while the enzyme is unwinding DNA at over ∼1,000 bp/s. Previous studies implicated the RecC subunit as the "χ-scanning...
متن کاملSynthesis and Crystal Growth of Sb2S3 Nanorods Using Iodine as an Initiator Material via Electrochemical Mechanism in Hydrothermal Condition
Crystalline antimony sulfide (Sb2S3) with nanorods morphology was successfully prepared via hydrothermal method by the reaction of elemental sulfur, antimony and iodine as starting materials with high yield at 180°C for 24h.Using oxidation reagents like iodine as an initiator of redox reaction to prepare Sb2S3 is reported for first time. Crystal growth of Sb2S3 was done by increasing reaction t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 28 7 شماره
صفحات -
تاریخ انتشار 2009